Contents

1.0 Introduction
2.0 Project
3.0 Eligibility
 3.1 Biomass from Qualified Operations
 3.2 Additionality
 3.3 Energy Recovery
 3.4 Energy Sales
 3.5 Location
 3.6 Project Start Date
4.0 Assessment Boundary
5.0 Calculation Methods
 5.1 Biomass for Energy Project
 5.2 Baseline Business as Usual
 5.3 Net GHG Project Reduction
6.0 Monitoring
7.0 Reporting and Recordkeeping
8.0 Verification
9.0 Glossary
10.0 References
11.0 Emissions Factors
12.0 Attachments
Figures

1. System Boundary Definition 27

Tables

1. Biomass for Energy Source Categories, GHG Sources, and GHG Emissions 26

Forms

A. Project Definition 28
B. Monitoring and Recordkeeping 29
C. Reporting 31
1.0 **Introduction**

This protocol provides accounting, reporting, and monitoring procedures to determine greenhouse gas (GHG) reductions associated with biomass waste for energy projects.

The protocol is for projects which process and transport biomass waste for the generation of energy (e.g. electricity and process heat). The protocol is limited to projects where, under baseline, business as usual conditions, at the start of the project, the biomass waste would have otherwise been legally disposed of through: (1) open burning; (2) decay and decomposition in the field; or (3) landfill. The protocol is also limited to biomass waste that is the result of sustainable harvesting operations; and includes urban woody post-consumer yard wastes.

Biomass waste for energy projects reduce GHG emissions through: (1) avoiding methane (CH$_4$) and nitrous oxide (N$_2$O) emissions that occur during disposal through open burning, decay and decomposition, and/or landfilling; and (2) producing renewable energy that displaces GHG emissions from fossil fuel combustion needed for an equivalent energy supply.
2.0 Project

Biomass waste is generated from forestry, agriculture, urban landscape, and related industries. Biomass is defined as non-fossilized and biodegradable organic material originating from plant material. Biomass waste disposal methods include open burning, decay and decomposition in the field, or landfill. Biomass waste includes:

- Forest slash (non-merchantable) remains from forest management activities including timber harvesting or forest thinning and fuel hazard reduction. These include small trees, brush, tree tops, and branches.
- Defensible space clearing residues (brush, tree branches and trunks, clippings).
- Orchard and vineyard removals and prunings.
- Field straws and stalks.
- Urban prunings/cuttings residues.

Biomass waste has energy content that can be utilized in energy recovery facilities, which include:

- Direct biomass combustion, producing heat and/or electricity.
- Biomass gasification, producing syngas used for heat or electricity production, or conversion into alternative transportation fuels (e.g. biofuels).

Sources of GHG emissions from a biomass waste for energy project are shown in Table 1.

2.1 Project Definition

For this protocol, the GHG reduction project involves the use of biomass wastes for energy recovery, where otherwise under baseline, business as usual conditions, the biomass waste would have been disposed of through open burning, left to decay and decompose in the field, or landfilled.

The project developer must provide information defining the project operations, including:

- Location where the biomass waste is generated.
- Operation for which the biomass waste is a byproduct, i.e. how is the biomass waste generated.
- Generation (rate and timing) of the biomass waste.
- Composition of the biomass waste.
- Historical, current, and anticipated future, disposal practice for the biomass waste in the absence of the proposed biomass waste to energy project.
- Biomass waste processing operations prior to transport, such as conveyors, grinders, and loaders.
- Biomass waste transportation method.
- Location of energy recovery facility.
- Type of energy produced (e.g. electricity, heat, fuels).
- Estimated cost of processing and transporting biomass waste to the energy recovery facility.
- Generation rate of energy from biomass waste.
- User(s) / purchaser(s) of energy generated from biomass waste.
- Permitting status of the energy recovery facility.
- Documentation of environmental assessments required as part of the biomass waste generating activities. These might include the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), California Forest Practices Rules and Regulations, Timber Harvest Plans, and Best Management Practices assessments.

This information must be provided in Form A, included as an attachment to the protocol. Form A must be completed, submitted, and approved prior to project commencement.

2.2 Project Developer

Project developers can include biomass generators, biomass waste energy recovery operators, and/or third party aggregators. Ownership of the GHG reductions must be established by clear and explicit title, where ownership is determined through agreement between project developers. This is important to avoid double counting of reductions by the energy recovery operator, biomass processor, biomass owner (landowner), or third party investor.

2.3 Methane and Nitrous Oxide Global Warming Potential Characterization Factors

Methane (CH₄) has a global warming potential characterization factor of 21 tons of CO₂eq per ton of methane.

Nitrous oxide (N₂O) has a global warming potential characterization factor of 310 tons CO₂eq per ton N₂O.
3.0 Eligibility

Projects must meet the following requirements to be eligible for GHG offset credits under this protocol.

3.1 Biomass from Qualified Operations

The biomass waste material used for energy recovery must be characterized as:

- “Biomass” – The material must be non-fossilized and biodegradable organic material.
- “Excess waste” – The material must be an excess waste byproduct that, in the absence of the project, would be disposed of through open burning, or deposited in the field or landfilled.
- “Sustainable” – The material must be a byproduct of operations which:
 -- Protect or enhance long-term productivity of the site by maintaining or improving soil productivity, water quality, wildlife habitat, and biodiversity.
 -- Meet all local, state, and federal environmental regulations, including National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), California Forest Practices Rules and Regulations, Timber Harvest Plans, and Best Management Practices.

3.2 Additionality

Project GHG emission reductions must be “additional” to what would have otherwise occurred.

It must be demonstrated that the existing, baseline business as usual disposal practice of the biomass wastes at the beginning date of the project is through either:

- Open burning in the vicinity of the production site. It must be demonstrated that this disposal practice is a legally allowable method under the local Air District and the State and that an open pile burn permit has been or could be obtained.
- Decay and decomposition in the vicinity of the production site, with no commercial value derived from the end-product.
- Landfilled.

The project developer must demonstrate there are no alternative uses for the biomass waste. It must not be currently economical within the local market to utilize or sell the biomass waste as a product or process feedstock. This requires providing documentation of previous
historical disposal practices, current disposal practices in the absence of the proposed project, and future planned/anticipated disposal practices.

3.3 Energy Recovery

The biomass waste must be used in an energy recovery facility. The energy recovery facility must:

- Meet all Federal, State, and local environmental regulations, including (but not limited to) air quality, water discharge, and solid waste.
- Produce energy (e.g. electricity, heat, fuel) that is under control of a project participant, or an entity that has a contractual agreement or is an affiliate with the project developer.
- Produce energy that is valuable and utilized, and would not have otherwise been generated.

3.4 Energy Sales

Energy produced from the biomass wastes must be documented to not be claimed for use by other projects for GHG mitigation purposes.

3.5 Location

This protocol is applicable to biomass generation and energy recovery project operations that are located in California.

3.6 Project Start Date

Projects are eligible which begin after the date of approval of the protocol (January 2013), or after January 1, 2007 for qualifying early action projects, and after the necessary project initiation forms have been completed and approved (including Form A).
4.0 **Assessment Boundary**

The biomass waste for energy project boundary is defined to include all GHG emissions from operations that are the result of the biomass waste for energy project. The physical boundary of the biomass waste for energy project is shown in Figure 1. GHG emissions must be accounted for operations, as detailed in Table 1, including:

Baseline, Business as Usual

- Open biomass burning. Includes quantification of CO$_2$, CH$_4$, and N$_2$O.
- Decay and decomposition of biomass disposal in field. Includes quantification of CH$_4$ and N$_2$O.
- Landfill. Includes quantification of CH$_4$.

Biomass Waste for Energy Project

- Fossil fuel fired engines, at the site where the biomass waste is generated, that would not have been used had the biomass waste been disposed of through open burning or left to decay. This includes engines that power biomass waste processing equipment used at the site of biomass waste generation – including chippers, grinders, shredders, loaders, excavators, conveyors, etc. Includes quantification of CO$_2$.
- Fossil fuel fired engines used to facilitate transport of biomass waste from the site of generation to the energy recovery facility. Includes quantification of CO$_2$.
- Biomass waste usage at the energy recovery facility. For biomass combustion boilers, quantification of CO$_2$ is required. The quantification of CH$_4$ and N$_2$O is not required as it is considered negligible for a combustor that meets state and local air quality regulations. Other types of energy recovery units may require quantification of CH$_4$ and N$_2$O.
- Fossil fuel fired engines used for transportation of equipment and personal to the biomass waste processing site. Includes quantification of CO$_2$ emissions.
- Fossil fuel fired engines used at energy recovery facility for operation of auxiliary equipment, such as conveyors and loaders, that would not have been used otherwise in the absence of the project. Includes quantification of CO$_2$ emissions.
5.0 **Calculation Methods**

5.1 **Biomass Waste for Energy Project**

5.1.1 **Biomass Processing Rate**

Determine the quantity of biomass (total wet weight), BM_W, meeting the above eligibility criteria, which is delivered to the energy recovery facility:

\[BM_{T,W} \text{ Quantity of wet (green) biomass utilized at energy recovery facility (wet tons). Determined from the summation of direct weight measurement of every separate biomass delivery received at the energy recovery facility.} \]

Determine the quantity of biomass (total bone dry weight), $BM_{T,D}$, as:

\[BM_{T,D} = BM_{T,W} \times (1 - M) \] \hspace{1cm} (Eq. 1)

where:

\[M \] Moisture content of biomass (%). Determined through sampling and analysis of the biomass delivered to the energy recovery facility. (Sampling and measurement will be based on ASTM E870-82, ASTM D 3173, or equivalent. Sampling will occur at biomass energy recovery facility.)

5.1.2 **Energy Produced from Biomass**

Determine the energy content of biomass waste delivered to the biomass energy recovery facility, Q_{BM}, (MMBtu) as:

\[Q_{BM} = BM_{T,D} \times HHV_{BM} \] \hspace{1cm} (Eq. 2)

where:

\[HHV_{BM} \] Higher Heating Value of biomass waste (MMBtu/dry ton). Determined by periodic or most current sampling and analysis of biomass. (Measurement of HHV will be based on ASTM E870-82, ASTM D 5865, or equivalent.). HHV is utilized within this protocol instead of LHV because it is more prominently used in the biomass energy recovery industry. If LHV is utilized, appropriate conversion factors must be used to calculate an equivalent HHV.

Next, determine the energy produced from the biomass at the energy recovery facility, E_{BM}, as:
\[E_{BM} = Q_{BM} \times f \]
(Eq. 3)

where:

\(f \)
Energy production generation efficiency. Determined as the ratio of net useful energy produced by the facility (gross energy produced minus parasitic plant energy requirements) to the total fuel heat input rate. This parameter must be determined on a basis of HHV.

For the production of electricity, this is referred to as the facility heat rate (determined as the kWh \(_e\) new electricity / MMBtu fuel input).

The efficiency will be based on measurements of facility operations using the biomass waste based on an annual facility average efficiency.

5.1.3 GHG Displaced by Energy Produced from Biomass

Determine the GHG emissions from fossil fuel combustion that are displaced by the energy produced from the biomass, \(\text{GHG}_E \), as:

\[\text{GHG}_E = E_{BM} \times \text{EF}_E \]
(Eq. 4)

where:

\(\text{EF}_E \)
Emission factor for CO\(_{2e}\) from energy generation that is displaced by the biomass for energy project (tons CO\(_{2e}\) / unit of energy supplied by the excess biomass for energy facility).

For displaced electricity, it might be appropriate to the use of a factor of 800 lb CO\(_{2e}\) / MW – based on marginal electricity generation supplied by a combined cycle natural gas system.

Alternatively, it may be appropriate to utilize the local serving utility CO\(_2\) emission factor, determined as the average of all baseload and marginal production sources. Particularly, in cases where the utility overall average is lower than that of combined cycle natural gas generation system.

5.1.4 GHG Emissions from Ancillary Biomass Handling, Processing, and Transportation Operations

Determine the amount of GHG resulting from ancillary biomass handling, processing, and transport operations, \(\text{GHG}_{\text{AUX}} \), as:

\[\text{GHG}_{\text{AUX}} = \text{GHG}_{\text{TRANS}} + \text{GHG}_{\text{PROC}} \]
(Eq. 5)
where:

$$\text{GHG}_{\text{TRANS}} = \text{VM} \times \text{MPG} \times \text{EF}_{\text{FF}}$$ \hspace{1cm} (Eq. 6)

GHG_TRANS \quad \text{CO}_2e \text{ emissions from vehicles used to transport biomass to the energy}
\text{recovery facility; and vehicles used to transport workers to the}
\text{biomass processing site.}

VM \quad \text{Vehicle miles driven for biomass transport (round trip); and miles}
driven to transport workers to the biomass processing site. \text{ In}
\text{reporting period.}

MPG \quad \text{Vehicle mileage achieved by transport vehicles (miles/gallon).}

EF_{\text{FF}} \quad \text{Emission factor for CO}_2 \text{ for fossil fuel combustion (lb CO}_2/\text{gal fuel)}
\text{- for diesel, 22.23 lb CO}_2/\text{gallon; for gasoline, 19.37 lb CO}_2/\text{gal.}

and

$$\text{GHG}_{\text{PROC}} = (\text{T}_{\text{FF}} \times \text{R}_{\text{FF}}) \times \text{EF}_{\text{FF}}$$ \hspace{1cm} (Eq. 7)

where:

T_{\text{FF}} \quad \text{Time equipment used to operate biomass processing equipment,}
\text{ including grinders, chippers, shredders, conveyors, and loaders,}
\text{ bulldozers, and excavators. (Reported in hours).}

R_{\text{FF}} \quad \text{Average volumetric fuel use rate (gallons per hour) for equipment}
\text{ used to operate biomass processing equipment, including grinders,}
\text{ chippers, shredders, conveyors, and loaders, bulldozers, and}
\text{ excavators. (Reported in hours).}

5.1.5 GHG Emissions From Biomass Combustion

Determine CO\(_2\) from biomass combustion, as:

$$\text{GHG}_{\text{BCOM}} = \text{BM}_{\text{T, D}} \times \text{EF}_{\text{CO2 BM}}$$

where:

EF\text{CO2 BM} \quad \text{Emission factor for CO}_2 \text{ from biomass combustion, recommended as}
\text{ 1.8 tons CO}_2/\text{ton dry biomass.}

5.1.6 GHG Emissions From Biomass for Energy Project

Determine the biomass for energy project GHG emissions, GHG\text{PROJ}, as:
GHG\textsubscript{PROJ} = GHG\textsubscript{AUX} − GHG\textsubscript{E} + GHG\textsubscript{BCOM} \quad \text{(Eq. 8)}

5.2 Baseline

5.2.1 Baseline Biomass Disposal Practice

Determine the quantity (dry tons) of biomass that would have been uncontrolled open burned, BM\textsubscript{OB,D}, the quantity of biomass that would have been left to decay in the field, BM\textsubscript{DD,D}, and the quantity of biomass that would have been landfilled, BM\textsubscript{LF,D}:

\[
BM\textsubscript{OB,D} = BM\textsubscript{T,D} \times X\textsubscript{OB} \quad \text{(Eq. 9)}
\]

\[
BM\textsubscript{DD,D} = BM\textsubscript{T,D} \times X\textsubscript{DD} \quad \text{(Eq. 10)}
\]

\[
BM\textsubscript{LF,D} = BM\textsubscript{T,D} \times X\textsubscript{LF} \quad \text{(Eq. 11)}
\]

where:

\[
X\textsubscript{OB} \quad \text{Fraction (dry weight %) of biomass that would have been uncontrolled open burned. Based on historical, current, and future projected practices.}
\]

\[
X\textsubscript{DD} \quad \text{Fraction (dry weight %) of biomass that would have been left to decay in the field. Based on historical, current, and future projected practices.}
\]

\[
X\textsubscript{LF} \quad \text{Fraction (dry weight %) of biomass that would have been landfilled.}
\]

5.2.2 GHG Emissions from Baseline Disposal

Determine GHG emissions that would have resulted from the baseline disposal practices, GHG\textsubscript{BASE}, as the sum of emissions from uncontrolled open burning, GHG\textsubscript{OB}, field decay and decomposition, GHG\textsubscript{DD}, and landfilled, GHG\textsubscript{LF}, as:

\[
GHG\textsubscript{BASE} = GHG\textsubscript{OB} + GHG\textsubscript{DD} + GHG\textsubscript{OB} \quad \text{(Eq. 12)}
\]

where:

\[
GHG\textsubscript{BASE} \quad \text{Total baseline greenhouse gas emissions, as CO}_2\text{e equivalent (tons CO}_2\text{e)}
\]

\[
GHG\textsubscript{OB} \quad \text{Greenhouse gas emissions from uncontrolled open burning, as CO}_2\text{e equivalent (tons CO}_2\text{e)}
\]
GHG_{DD} \quad \text{Greenhouse gas emissions from field decay and decomposition, as CO}_2 \text{ equivalent (tons CO}_2\text{e)}

GHG_{LF} \quad \text{Greenhouse gas emissions from landfilling, as CO}_2 \text{ equivalent (tons CO}_2\text{e)}

and,

\begin{align*}
\text{GHG}_{OB} &= (\text{EF}_{OB, CO_2} \times \text{BM}_{OB, D} \times \text{BF}) + (\text{EF}_{OB, CH_4} \times \text{BM}_{OB, D} \times \text{BF} \times 21) + (\text{EF}_{OB, N_2O} \times \text{BM}_{OB, D} \times 310) \\
\text{GHG}_{DD} &= \text{EF}_{DD, CH_4} \times \text{BM}_{DD} \times 21 + \text{EF}_{DD, N_2O} \times \text{BM}_{DD} \times 310 \\
\text{GHG}_{LF} &= \text{EF}_{LF, CH_4} \times \text{BM}_{DD} \times 21
\end{align*}

(Eq. 13) (Eq. 14) (Eq. 15)

where:

\text{EF}_{OB} \quad \text{Emission factor for CO}_2, \text{ CH}_4 \text{ and N}_2\text{O from uncontrolled open pile burning of biomass. Recommend the use of:}

- \text{CO}_2 : 1.73 \text{ tons CO}_2 / \text{ton dry biomass}
- \text{CH}_4 : 0.005 \text{ ton CH}_4 / \text{ton dry biomass}
- \text{N}_2\text{O} : 0.00015 \text{ ton N}_2\text{O} / \text{tons dry biomass}

\text{BF} \quad \text{Biomass consumption burn out efficiency of the open pile burn. Recommend the use of 95%}.

\text{EF}_{DD} \quad \text{Emission factor for CH}_4 \text{ and N}_2\text{O from in-field decay and decomposition of biomass. Recommend the use of 0.05 ton CH}_4 / \text{ton dry biomass. Recommend the use of 0 tons N}_2\text{O} / \text{ton dry biomass}.

\text{EF}_{LF} \quad \text{Emission factor for CH}_4 \text{ from landfilling of biomass. Recommend the emission factor be determined using the procedure contained in the Climate Action Reserve Landfill Protocol for GHG Offset Projects.}

5.3 \quad \text{Net GHG Project Reduction}

Determine GHG reductions from biomass waste to energy recovery project, \text{GHG}_{NET}, as:

\text{GHG}_{NET} = \text{GHG}_{BASE} - \text{GHG}_{PROJ}

(Eq. 14)
6.0 Monitoring

Project data monitoring requirements are shown Form B.
7.0 **Reporting and Recordkeeping**

7.1 **Project Commencement**

Form A must be completed, submitted, and approved prior to project commencement, as discussed in Section 2.1 and Section 3.6.

7.2 **Recordkeeping**

Form B can be used to collect, maintain, and document the required information. Information is to be kept for a period of 10 years after it is generated, or 7 years after the last verification.

7.3 **Reporting**

Form C can be used to report on project emission reductions. Reporting must be made on a monthly basis.

Project developers must report GHG emission reductions on an annual (12-month) calendar basis.
8.0 Verification

Project activities and GHG emission reductions must be verified and certified by a qualified third party prior to GHG emission reduction issuance. The verifier must review and assess the reported data to confirm that it adheres with all the requirements of this protocol; and determine that the emissions reductions are accurate, consistent, and credible. The third party verifier must be approved by the responsible entity that issues the emission reductions.
9.0 **Glossary of Terms**

Additionality: Biomass residue management practices that are above and beyond business as usual operation, exceed the baseline characterization, and are not mandated by regulation.

Biomass energy recovery operator: Entity that owns and/or operates a facility that processes and utilizes biomass waste as a feedstock to generate useful energy (electricity, heat, fuels).

Biomass generator: Landowner or independent contractor that conducts operations that result in the generation of biomass waste residuals.

Biomass waste residue: Non-fossilized and biodegradable organic material originating from plant material, which due to economic considerations are disposed of through open burning or deposited at the site of generation and left to decay and decompose or are transported to a landfill.

Carbon dioxide (CO$_2$): Greenhouse gas consisting of a single carbon atom and two oxygen atoms.

CO$_2$ equivalent (CO$_{2e}$): The quantity of a given GHG multiplied by its total global warming potential.

Emission factor (EF): A value for determining an amount of a greenhouse gas emitted for a given quantity of activity data (e.g. short tons of methane emitted per dry ton of biomass combusted).

Fossil fuel: A fuel, such as coal, oil, and natural gas, produced by the decomposition of ancient (fossilized) plants and animals.

Greenhouse gas (GHG): Includes carbon dioxide (CO$_2$), methane (CH$_4$), nitrous oxide (N$_2$O), sulfur hexafluoride (SF$_6$), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs).

Global Warming Potential (GWP): The ratio of radiative forcing (degree to warming to the atmosphere) that would result from the emission of one unit of a given GHG compared to one unit of CO$_2$.

kWh$_e$: Kilowatt-hour of electricity.

Methane (CH$_4$): Greenhouse gas with a GWP of 21, consisting of a single carbon atom and four hydrogen atoms.

MMBtu: Million British Thermal Units.

MWh$_e$: Megawatt-hour of electricity.

Nitrous oxide (N$_2$O): Greenhouse gas with a GWP of 310, consisting of two nitrogen atoms and a single oxygen atom.
Open burning: The intentional combustion of biomass material in piles for disposal without processing or energy recovery operations.

Project developer(s): An entity (or multiple entities) that undertakes a project activity, as defined in the Biomass for Energy Protocol. Project developers include, but are not limited to biomass waste generators, biomass waste energy recovery operators, and/or third party aggregators.

Syngas: Synthetic gas produced through industrial processing of biomass material into gaseous (i.e. methane) or further refined into liquid fuels (biofuels).

Third Party Aggregator: An entity that facilitates the project as is not the landowner, biomass waste generator, or biomass waste energy recovery operator for the purpose of generating GHG emission offset credits.
10.0 References

Intergovernmental Panel on Climate Change (IPCC), Fourth Assessment Report, Changes in Atmospheric Constituents and in Radiative Forcing, Chapter 2, pp. 211-216, 2007.

11.0 Emission Factors
Methane Emission Factors for Open Burning of Biomass

<table>
<thead>
<tr>
<th>Reference / Burn Type</th>
<th>CH4 as reported by author</th>
<th>CH4 lb/dry ton fuel consumed</th>
</tr>
</thead>
</table>

Broadcast Logging Slash

- Hardwood (fire) 6.1 g/kg fuel consumed 12.2
- Conifer short needle (fire) 5.6 g/kg fuel consumed 11.2
- Conifer long needle (fire) 5.7 g/kg fuel consumed 11.4
- Logging slash debris dozer piled conifer (fire) 1.8 g/kg fuel consumed 3.6

Broadcast Burned Slash

- Douglas fir 11.0 lb/ton fuel consumed 11.0
- Ponderosa pine 8.2 lb/ton fuel consumed 8.2
- Mixed conifer 12.8 lb/ton fuel consumed 12.8

Pile and Burn Slash

- Tractor piled 11.4 lb/ton fuel consumed 11.4
- Crane piled 21.7 lb/ton fuel consumed 21.7

U.S. EPA, Compilation of Air Pollutant Emission Factors, AP-42, Section 2.5, Open Burning, October 1992, Table 2.5-5.

- Unspecified 5.7 lb/ton material burned 10.4
- Hemlock, Douglas fir, cedar 1.2 lb/ton material burned 2.4
- Ponderosa pine 3.3 lb/ton material burned 6.6

- 90% combustion efficiency 3.8 g/kg fuel consumed 7.6

Ponderosa pine pile burn 1.3 g/kg dry fuel 1.7
Almond pruning pile burn 1.2 g/kg dry fuel 2.6
Douglas fire pile burn 1.9 g/kg dry fuel 3.0
Walnut pruning pile burn 2.0 g/kg dry fuel 4.0

Literature search on biomass open burning 1 - 20 g/kg dry fuel 10.0
Nitrous Oxide Emission Factors for Open Burning of Biomass

0.00015 ton / ton dry
Methane Emission Factors for Decay and Decomposition of Biomass

Assumes 9% carbon in biomass is converted to carbon in methane. Biomass has a molecular formula of $\text{C}_6\text{H}_{10}\text{O}_6$. 0.05 ton / ton dry
Nitrous Oxide Emission Factors for Decay and Decomposition of Biomass

Engineering judgment. At temperatures of in-field decay and decomposition, N₂O is expected to be negligible. Nitrogen in fuel will go to NH₃.
12.0 Attachments

Table 1. Biomass for Energy Project -- Source Categories, GHG Sources, and GHG Emissions

<table>
<thead>
<tr>
<th>Source</th>
<th>Associated GHGs</th>
<th>Included in GHG assessment boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Uncontrolled Pile Burning</td>
<td>CO(_2)</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td>CH(_4)</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td>N(_2)O</td>
<td>Included</td>
</tr>
<tr>
<td>In-field Decay and Decomposition</td>
<td>CO(_2)</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td>CH(_4)</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td>N(_2)O</td>
<td>Included</td>
</tr>
<tr>
<td>Landfill</td>
<td>CO(_2)</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td>CH(_4)</td>
<td>Included</td>
</tr>
<tr>
<td>Biomass for Energy Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation -- engine combustion of fossil fuels</td>
<td>CO(_2)</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td>CH(_4)</td>
<td>Not included; negligible</td>
</tr>
<tr>
<td></td>
<td>N(_2)O</td>
<td>Not included; negligible</td>
</tr>
<tr>
<td>Processing and Handling at Generation Site -- engine combustion of fossil fuels</td>
<td>CO(_2)</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td>CH(_4)</td>
<td>Not included; negligible</td>
</tr>
<tr>
<td></td>
<td>N(_2)O</td>
<td>Not included; negligible</td>
</tr>
<tr>
<td>Energy Recovery Facility</td>
<td>CH(_4)</td>
<td>Not included for combustors; may need to be included for other energy processing types</td>
</tr>
<tr>
<td></td>
<td>CO(_2)</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td>N(_2)O</td>
<td>Not included; negligible</td>
</tr>
<tr>
<td>Processing and Handling at Energy Recovery Facility -- engine combustion of fossil fuels</td>
<td>CO(_2)</td>
<td>Included</td>
</tr>
<tr>
<td></td>
<td>CH(_4)</td>
<td>Not included; negligible</td>
</tr>
<tr>
<td></td>
<td>N(_2)O</td>
<td>Not included; negligible</td>
</tr>
<tr>
<td>GHGs from conventional energy production displaced by energy from biomass waste</td>
<td>Dependent on conventional energy source</td>
<td>Included</td>
</tr>
</tbody>
</table>
Figure 1. System Boundary Definition

Biomass Waste for Energy Project

- **Biomass Processing**
 - Fossil Fuel Fired Engines: CO2

- **Biomass Transport**
 - Fossil Fuel Fired Engines: CO2

- **Energy Recovery**
 - Fossil Fuel Fired Engines: CO2; Biomass Conversion: CH4, CO2

Baseline Business as

- **Open Burning**
 - CO2, CH4

- **In-field Decay**
 - CO2, CH4

- **Landfill**
 - CO2, CH4

- **Displaced Energy Supply**
 - Fossil Fuel Combustion: CO2
Form A. Project Definition

<table>
<thead>
<tr>
<th>Date:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td></td>
</tr>
<tr>
<td>Project Developer:</td>
<td></td>
</tr>
<tr>
<td>Project Address:</td>
<td></td>
</tr>
<tr>
<td>Anticipated Project Dates:</td>
<td>Start Date:</td>
</tr>
<tr>
<td>Permitting Status:</td>
<td></td>
</tr>
</tbody>
</table>

Biomass Generation & Disposal Information

<table>
<thead>
<tr>
<th>Composition of Biomass (including moisture content)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic, Current, and Anticipated Disposal Practice</td>
<td></td>
</tr>
<tr>
<td>Biomass Generation Rate (green tons/day)</td>
<td></td>
</tr>
<tr>
<td>Cost of Biomass Processing and Transport ($/green ton)</td>
<td></td>
</tr>
</tbody>
</table>

Biomass Energy Recovery Information

<table>
<thead>
<tr>
<th>Type of Energy Produced</th>
<th>Electricity</th>
<th>Heat</th>
<th>Fuels</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name & Location of Energy Recovery Facility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generation Rate of Recovered Energy (MMBtu/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Users/Purchasers of Recovered Energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Form B. Monitoring and Recordkeeping

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Data Unit</th>
<th>How Measured</th>
<th>Measurement Frequency</th>
<th>Reported Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM<sub>T, w</sub></td>
<td>Biomass delivered to energy recovery facility</td>
<td>wet tons / delivery</td>
<td>Transport vehicle weight scale</td>
<td>Every separate delivered load</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Moisture content of biomass</td>
<td>moisture, wt. %</td>
<td>Sampling and analysis of biomass wastes</td>
<td>Every separate delivered load</td>
<td></td>
</tr>
<tr>
<td>HHV<sub>BM</sub></td>
<td>Higher heating value of biomass waste</td>
<td>Btu/lb, dry</td>
<td>Sampling and analysis of biomass wastes</td>
<td>Periodic – at least once per month</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>Energy production efficiency of energy recovery facility</td>
<td>net useful energy / biomass heat input</td>
<td>Measurement of boiler output and waste fuel input. Alternatively, based on manufacturer design specifications</td>
<td>Start of program; and updated as needed</td>
<td></td>
</tr>
<tr>
<td>VM</td>
<td>Vehicle miles traveled for biomass transport</td>
<td>miles</td>
<td>Vehicle odometer</td>
<td>Periodically (at least weekly)</td>
<td></td>
</tr>
<tr>
<td>MPG</td>
<td>Transport vehicle gas mileage</td>
<td>miles / gallon</td>
<td>Measurement of vehicle miles traveled and gas usage</td>
<td>Start of program, and updated as needed</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>How Measured</td>
<td>Measurement Frequency</td>
<td>Reported Measurement</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>V_{FF}</td>
<td>Volume of fossil fuels used to power biomass processing equipment, e.g. shredders, chipper, grinders, conveyors, loaders, excavators, bulldozers</td>
<td>gallons</td>
<td>Measurement of diesel fuel usage and/or equipment operating hours</td>
<td>Periodically (at least weekly)</td>
<td></td>
</tr>
<tr>
<td>X_{OB}</td>
<td>Fraction of biomass that would have been open burned</td>
<td>%, wet biomass</td>
<td>Determined based on current economics and operating practices</td>
<td>Start of program, and updated as needed</td>
<td></td>
</tr>
<tr>
<td>X_{DD}</td>
<td>Fraction of biomass that would have been left in field to decay and decompose</td>
<td>%, wet biomass waste</td>
<td>Determined based on current economics and operating practices</td>
<td>Start of program, and updated as needed</td>
<td></td>
</tr>
<tr>
<td>X_{LF}</td>
<td>Fraction of biomass that would have been landfilled</td>
<td>%, wet biomass waste</td>
<td>Determined based on current economics and operating practices</td>
<td>Start of program, and updated as needed</td>
<td></td>
</tr>
</tbody>
</table>
Form C. Reporting

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Data Unit</th>
<th>Reported Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM<sub>DD, D</sub></td>
<td>Biomass left in field to decay</td>
<td>bone dry tons</td>
<td></td>
</tr>
<tr>
<td>BM<sub>OB, D</sub></td>
<td>Biomass open burned</td>
<td>bone dry tons</td>
<td></td>
</tr>
<tr>
<td>BM<sub>LF, D</sub></td>
<td>Biomass landfilled</td>
<td>Bone dry tons</td>
<td></td>
</tr>
<tr>
<td>BM<sub>T, D</sub></td>
<td>Biomass delivered to energy recovery facility, adjusted for moisture</td>
<td>bone dry tons / delivery</td>
<td></td>
</tr>
<tr>
<td>BM<sub>T, W</sub></td>
<td>Biomass delivered to energy recovery facility</td>
<td>wet tons / delivery</td>
<td></td>
</tr>
<tr>
<td>E<sub>BM</sub></td>
<td>Energy produced from energy recovery facility</td>
<td>kWh</td>
<td></td>
</tr>
<tr>
<td>EF<sub>DD, CH₄</sub></td>
<td>Emission factor for in-field decay and decomposition</td>
<td>tons CH₄/ton dry biomass</td>
<td></td>
</tr>
<tr>
<td>EF<sub>DD, N₂O</sub></td>
<td>Emission factor for nitrous oxide from in-field decay and decomposition</td>
<td>tons N₂O/ton dry biomass</td>
<td></td>
</tr>
<tr>
<td>EF<sub>E</sub></td>
<td>Emission factor for CO₂ₑ for existing electricity generation</td>
<td>tons CO₂ₑ/unit energy</td>
<td></td>
</tr>
<tr>
<td>EF<sub>FF</sub></td>
<td>Emission factor for fossil fuel combustion</td>
<td>lb CO₂/gallon fuel</td>
<td></td>
</tr>
<tr>
<td>EF<sub>OB, CH₄</sub></td>
<td>Emission factor for methane from open pile burning</td>
<td>tons CH₄/ton dry biomass</td>
<td></td>
</tr>
<tr>
<td>EF<sub>OB, N₂O</sub></td>
<td>Emission factor for nitrous oxide from open pile burning</td>
<td>tons N₂O/ton dry biomass</td>
<td></td>
</tr>
<tr>
<td>EF<sub>LF, CH₄</sub></td>
<td>Emission factor for methane from landfill</td>
<td>tons CH₄/ton dry biomass</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>Energy production efficiency of energy recovery facility</td>
<td>net useful energy / biomass waste heat input</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Reported Value</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>GHG\textsubscript{AUX}</td>
<td>GHG resulting from ancillary biomass handling, processing, and transport</td>
<td>tons CO\textsubscript{2}e</td>
<td></td>
</tr>
<tr>
<td>GHG\textsubscript{BASE}</td>
<td>GHG resulting from baseline disposal practices</td>
<td>tons CO\textsubscript{2}e</td>
<td></td>
</tr>
<tr>
<td>GHG\textsubscript{DD}</td>
<td>GHG resulting from decay and decomposition</td>
<td>tons CO\textsubscript{2}e</td>
<td></td>
</tr>
<tr>
<td>GHG\textsubscript{E}</td>
<td>GHG displaced from energy production from biomass</td>
<td>tons CO\textsubscript{2}e</td>
<td></td>
</tr>
<tr>
<td>GHG\textsubscript{NET}</td>
<td>Net GHG reductions from</td>
<td>tons CO\textsubscript{2}e</td>
<td></td>
</tr>
<tr>
<td>GHG\textsubscript{OB}</td>
<td>GHG resulting from open burning activities</td>
<td>tons CO\textsubscript{2}e</td>
<td></td>
</tr>
<tr>
<td>GHG\textsubscript{LF}</td>
<td>GHG resulting from landfilling activities</td>
<td>tons CO\textsubscript{2}e</td>
<td></td>
</tr>
<tr>
<td>GHG\textsubscript{PROC}</td>
<td>GHG resulting from ancillary biomass handling and processing</td>
<td>tons CO\textsubscript{2}e</td>
<td></td>
</tr>
<tr>
<td>GHG\textsubscript{PROJ}</td>
<td>GHG resulting from the biomass waste to energy project</td>
<td>tons CO\textsubscript{2}e</td>
<td></td>
</tr>
<tr>
<td>GHG\textsubscript{TRANS}</td>
<td>GHG resulting from transport operations</td>
<td>tons CO\textsubscript{2}e</td>
<td></td>
</tr>
<tr>
<td>HHV\textsubscript{BM}</td>
<td>Higher heating value of biomass</td>
<td>Btu/lb, dry</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Moisture content of biomass</td>
<td>moisture, wt. %</td>
<td></td>
</tr>
<tr>
<td>MPG</td>
<td>Transport vehicle gas mileage</td>
<td>miles / gallon</td>
<td></td>
</tr>
<tr>
<td>Q\textsubscript{BM}</td>
<td>Heat content per delivery of biomass at facility</td>
<td>MMBtu</td>
<td></td>
</tr>
<tr>
<td>R\textsubscript{FF}</td>
<td>Average volumetric fuel use rate for processing equipment</td>
<td>gallons/hour</td>
<td></td>
</tr>
<tr>
<td>T\textsubscript{FF}</td>
<td>Time equipment used for processing operations</td>
<td>hours</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Data Unit</td>
<td>Reported Value</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>V_{FF}</td>
<td>Volume of fossil fuels used to power biomass processing equipment, e.g. shredders, chipper, grinders, conveyors, loaders, excavators, bulldozers</td>
<td>gallons</td>
<td></td>
</tr>
<tr>
<td>VM</td>
<td>Vehicle miles traveled for biomass waste transport</td>
<td>miles</td>
<td></td>
</tr>
<tr>
<td>X_{DD}</td>
<td>Fraction of biomass that would have been left in field to decay and decompose</td>
<td>%, wet biomass</td>
<td></td>
</tr>
<tr>
<td>X_{OB}</td>
<td>Fraction of biomass that would have been open burned</td>
<td>%, wet biomass</td>
<td></td>
</tr>
<tr>
<td>X_{LF}</td>
<td>Fraction of biomass that would have been landfilled</td>
<td>%, wet biomass</td>
<td></td>
</tr>
</tbody>
</table>