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ABSTRACT

Projected changes in global rainfall patterns will likely alter water supplies and ecosystems in semiarid

regions during the coming century. Instrumental and paleoclimate data indicate that natural hydroclimate

fluctuations tend to be more energetic at low (multidecadal to multicentury) than at high (interannual) fre-

quencies. State-of-the-art global climate models do not capture this characteristic of hydroclimate variability,

suggesting that the models underestimate the risk of future persistent droughts. Methods are developed here

for assessing the risk of such events in the coming century using climate model projections as well as ob-

servational (paleoclimate) information. Where instrumental and paleoclimate data are reliable, these

methods may provide a more complete view of prolonged drought risk. In the U.S. Southwest, for instance,

state-of-the-art climate model projections suggest the risk of a decade-scale megadrought in the coming

century is less than 50%; the analysis herein suggests that the risk is at least 80%, andmay be higher than 90%

in certain areas. The likelihood of longer-lived events (.35 yr) is between 20% and 50%, and the risk of an

unprecedented 50-yr megadrought is nonnegligible under the most severe warming scenario (5%–10%).

These findings are important to consider as adaptation and mitigation strategies are developed to cope with

regional impacts of climate change, where population growth is high and multidecadal megadrought—worse

than anything seen during the last 2000 years—would pose unprecedented challenges to water resources in the

region.

1. Introduction

Information recorded in paleoclimate archives reveals

that the twentieth century does not represent the full

range of drought variability experienced inwesternNorth

America (WNA) during the last millennium (e.g.,

Woodhouse and Overpeck 1998; Stahle et al. 2007; Cook

et al. 2004; Meko et al. 2007). Prolonged droughts com-

prise a source of climate risk in this region and elsewhere

(Woodhouse and Overpeck 1998; Shanahan et al. 2009;

Buckley et al. 2010; Haug et al. 2003; deMenocal 2001).

Decade-scale droughts like the 1930s Dust Bowl occur,

on average, once or twice per century (Woodhouse and

Overpeck 1998), and considerably longer periods of

aridity (megadroughts) are also apparent in paleoclimate

records (Woodhouse and Overpeck 1998). Were such

megadroughts to occur today, they would exact re-

gionally unprecedented socioeconomic tolls and
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ecological consequences. For example, during the 1150s,

the 25-yr average of reconstructed Colorado River flow

dropped to 85% of the twentieth-century mean for 10

consecutive years (Meko et al. 2007). In modern terms,

this would be comparable to losing almost the entire

allocation for the state of Arizona from the long-term

mean for a decade. What is perhaps even more prob-

lematic for water resource management is that the 1150s

were centered in a 23-yr interval of below-average

moisture across WNA, and a similar interval in the

twelfth century spanned 22 yr (1276–99; Cook et al.

2007). Older tree-ring records suggest that regional

droughts can persist, and have persisted, for longer still

(;50 yr; Routson et al. 2011).

Prolonged droughts have happened during the instru-

mental era and include the 1930s Dust Bowl (Fye et al.

2003), drought in sub-Saharan Africa (e.g., Charney

1975; Folland et al. 1986), and the recent ‘‘Big Dry’’ in

Australia (Leblanc et al. 2012). Since these events occur

infrequently, it is difficult to understand their statistics

using data from the instrumental era alone. Tree-ring re-

constructions partially address this limitation, and in the

U.S. Southwest they suggest that events similar to the

1150s ColoradoRiver megadrought would be expected to

occur every 400–600 yr (Meko et al. 2012). This view of

risk is incomplete, however, because it is specific to the

1150s event and ‘‘megadrought risk’’ could be applied

more generally to a wide range of time scales. More crit-

ically, the statistics of twenty-first-century climate will be

influenced by anthropogenic greenhouse gases (GHG)

(Solomon et al. 2007). The risk of future prolonged

drought risk will therefore depend on the internal rate at

which these events occur as well as any GHG-forced

changes in their underlying statistics. In the U.S. South-

west, for instance, precipitation is projected to decrease as

a consequence of GHG-forced changes (e.g., Seager et al.

2007; Solomon et al. 2007; Diffenbaugh and Giorgi 2012).

Any assessment of future megadrought risk, therefore,

should account for both the natural variability inferred

frommulticentennial paleoclimate records and the changes

in rainfall patterns projected to occur in the coming century.

This paper estimates future prolonged drought risk

using information from instrumental records, paleo-

climate archives, and climate model simulations in

simple Monte Carlo realizations of hydroclimate. The

motivation for doing so comes from our notion of risk as

a fractional quantity referring to the likelihood of pro-

longed drought occurrence. We rely on global climate

model simulations of change during the twenty-first

century as estimates of mean conditions in the future,

and we use simple statistical models to build up large

ensembles for calculating risk. This technique assumes

the following:

1) Coupled global climate model simulations of the

twenty-first century present a realistic view of the

direction, magnitude, and uncertainty in forced pre-

cipitation changes, relative to today.

2) Paleoclimate records and observational data can

empirically describe the distribution of variance

across the frequency spectrum from interannual to

multidecadal time scales in regional hydroclimate.

3) Simple models of time series are adequate for

simulating the local statistical characteristics of hy-

droclimate across interannual to multidecadal time

scales, regardless of whether these characteristics are

externally forced or internally generated.

Justifications for statements 1 and 2 are straightfor-

ward: state-of-the-art models agree that semiarid sub-

tropical regions throughout the world will tend to dry

under climate change (e.g., Diffenbaugh and Giorgi

2012), and paleoclimate records, especially tree rings,

are reasonably well validated and widely used to char-

acterize variations of the past for a wide range of water

resource management applications (Meko et al. 2012).

Assumption 3 in the list above deserves further elab-

oration. We begin by noting that in western North

America over the last millennium, stochastic variability

and autocorrelation alone may account for the magni-

tude of hydroclimatic variations on time scales from

years to decades (Hunt 2011; Ault et al. 2013; Coats et al.

2013b). Second, one can easily imagine a situation where

in a single realization of a given model, climatic forcing

enhances overall aridity, but megadroughts do not occur

because a few intermittent wet years disrupt their du-

ration. Given the statistics of this model, megadroughts

might still be likely, but would not be found in this

particular realization.

The scenario delineated above is shown schematically

in Fig. 1. Here, an idealized time series of some hydro-

logical variable (sayP2E) has been generatedwith unit

variance and a mean of zero for the first 100 ‘‘years’’

(Fig. 1a). At year 101 the mean is shifted by20.25s and

an additional 50 years of data are generated while the

variance stays the same. Figures 1b and 1c show re-

alizations of 50 yr of data with the same mean and var-

iance as the final 50 yr of the series in Fig. 1a. Although

both the time series in Figs. 1b and 1c have the same

mean and variance, a prolonged period of time with low

values (a ‘‘megadrought’’) is found in the first re-

alization (Fig. 1b), whereas in the second realization

(Fig. 1c) it is not.

Implied by Fig. 1 is the possibility that deterministic

simulations of climate change using state-of-the-art

numerical models may be insufficient for estimating

megadrought risk because the ensemble sizes of such
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experiments are relatively small (tens of realizations per

model at most), and the statistics of infrequent events

such as megadroughts might not be robust. Using a

multimodel ensemble does not completely guard against

this limitation because model simulations disagree on

the expression of forced changes in hydroclimate at re-

gional scales (e.g., Diffenbaugh and Giorgi 2012). In-

stead, we use large ensembles of stochastic variables to

emulate the statistics of interannual to decadal vari-

ability, and output from global climate models to esti-

mate how precipitation is expected to change this

century. The limitations and possible implications of this

assumption are discussed in section 4.

2. Data and methods

To establish benchmarks for decadal drought and

multidecadal megadrought, we use instrumental pre-

cipitation data (Fig. 2; Mitchell and Jones 2005), and

several recent reconstructions of hydroclimate including

the Palmer drought severity index (PDSI) for the

southwestern United States (Cook et al. 2004), Colo-

rado River streamflow reconstructions (Meko et al.

2007), and drought from northern Mexico (Stahle et al.

2011) (Fig. 3). Although the reconstructions are pre-

cisely dated, they target different regions and aspects of

hydroclimate and hence are not expected to agree with

each other through time (and indeed they do not; Fig. 3).

In addition to these observational datasets, we use out-

put from 27 coupled general circulation models (GCMs)

that are members of the Climate Model Intercom-

parison Project phase 5 (CMIP5) archive. Models were

included if at least one unforced preindustrial control

(piControl) and forced ‘‘historical’’ (late nineteenth

and/or twentieth century) experiment were available, as

well as forced climate change simulations for each of

the following representative concentration pathways

(RCPs; Moss et al. 2010): RCP2.6, RCP4.5, and RCP8.5.

For illustrative purposes, the projected changes in mean

precipitation are shown for the RCP8.5 scenario in Fig. 4

(cf. Fig. 2 of Diffenbaugh and Giorgi 2012). The number

of available runs from each simulation considered here is

reported in the legend of the figure. All model and in-

strumental data were annualized (January–December)

prior to analysis, although our results are not sensitive to

the months used for annualization.

a. Standardizing hydroclimate indicators

Here we develop a systematic approach to normali-

zing hydroclimate fluctuations so that they retain their

essential meaning whether they originate from cli-

mate model simulations, observational datasets, or

FIG. 1. Schematic illustration of why large ensembles are needed to calculate megadrought risk. (a) The black line

shows the original and shifted mean, while (b),(c) the black lines show the original mean for reference. Importantly,

the means and variances are the same for the final 50 yr in (a)–(c) but only the realization in (b) experiences

a megadrought.
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paleoclimate reconstructions. We further seek to dis-

tinguish between decadal droughts, which have been

experienced during the instrumental era (e.g., the 1930s

Dust Bowl), and multidecadal megadrought events that

are outside the range of variability experienced during

the twentieth century. To begin, we consider two of the

worst decade-scale droughts during the twentieth cen-

tury: the 1930s Dust Bowl and the 1950s Southwest

drought. Both of these intervals can be identified as

20.5s departures in the decadal (11-yr) runningmean of

precipitation (Fig. 2).

Identifying 20.5s events in the 11-yr means of paleo-

climate records requires us to normalize these time

series to exhibit unit variance over the twentieth cen-

tury, so that fluctuations in the past are scaled relative to

this baseline period. To that end we represent the entire

Colorado streamflow record as normalized departures

[Ẑ(t)] from the late twentieth-century mean:

Ẑ(t)5
F(t)2 m̂

ŝ
, (1)

where F(t) is reconstructed flow and m̂ and ŝ are the

mean and standard deviation, respectively, of the annual

data over the reference period of 1950–2000 CE. The

time series of Ẑ(t) is a modified z score of F(t), and its

values through time are shown in Fig. 3a. Identifying

intervals of20.5s departures in the running 11-yr mean

highlights the 1150s, as well as several other low-flow

decades, which occur about once per century (gray

vertical bars). Time series from other recent drought

studies (Cook et al. 2004; Stahle et al. 2011), normalized

in the same way, are also shown in Figs. 3b and 3c. They

suggest that the preindustrial rate of comparable

decade-long droughts is ;1.5%century21, which is

quite consistent with the literature-based estimate of

1%–2%century21 of Woodhouse and Overpeck (1998).

Our definition of decadal drought captures major in-

tervals of aridity during the twentieth century as well as

others during the last millennium (Figs. 3 and 2). We

employ a second andmore stringent criterion to identify

multidecadal megadrought. In this case, 20.5s de-

partures in the 35-yr mean are identified. Although this

definition is somewhat arbitrary, it is useful because the

thresholds employed are both longer in time and greater

in magnitude than the descriptions of Meko et al. (2007)

and Cook et al. (2007) used to characterize the worst

droughts of the past millennium in Colorado streamflow

and continental-scale hydroclimate, respectively. By

setting the criterion for multidecadal megadrought

FIG. 2. The 11-yr running means of normalized paleoclimate reconstructions for twentieth-

century precipitation data from (a) the U.S. Southwest and (b) the Great Plains. Precipitation

data are from the University of East Anglia’s Climate Research Unit’s time series version 3.1

(TS3.1) dataset (Mitchell and Jones 2005). We identify decadal droughts as 20.5 standard

deviations of raw data in the 11-yr mean (vertical gray bars).
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beyond anything experienced during the last millen-

nium, we suggest that our results will be insightful for

developing adaptation and mitigation strategies for ad-

dressing worst-case scenarios. We also note that a 35-yr,

20.5s event would be on par with the consequential late

twentieth-century Sahel drought (e.g., Hoerling et al.

2006). Other similar thresholds (e.g., 25 or 45 yr) would

produce qualitatively similar spatial patterns, but the

rates of megadrought occurrence and levels of mega-

drought risk would of course differ from the ones we

report here. In particular, for a given magnitude (say

20.5s) the risk of shorter events would be higher and

the risk of longer events would be lower than that for

a 35-yr event.

b. Monte Carlo simulations of drought

With the definitions of ‘‘decadal drought’’ (an 11-yr,

20.5s event) and ‘‘multidecadal megadrought’’ (a 35-yr,

20.5s event) that we have outlined above, we now de-

velop ‘‘null’’ expectations for the rate at which these

events would occur from random chance under a station-

ary climate, but with three different assumptions about

the underlying frequency characteristics of hydroclimate

variability on interannual to centennial time scales.

We begin by examining the statistics of prolonged

drought when interannual hydroclimate fluctuations are

simulated as normally distributed white noise with unit

variance and standard deviation. An example of one

such time series, Xw(t) is shown in Fig. 5. The decadal

drought statistics of this type of noise, obtained from

1000 white noise realizations (each of length 100 years),

are summarized in Fig. 6. If the distribution of variance

across the hydroclimatic continuum were indeed white,

then decadal droughts would be expected to occur at

a rate of slightly ,1 (100 yr)21 (Fig. 6a), and the risk of

such an event occurring during any given 50-yr period

would be around 45% (Fig. 6b). The likelihood of

a multidecadal megadrought during any given 50-yr

period would be only about 0.45% (Fig. 6b). This pre-

liminaryMonte Carlo result establishes a benchmark for

the minimum rate at which decadal droughts and meg-

adroughts would occur in a climate with only stochastic

interannual variability and no sources of long-term

persistence.

Although raw precipitation tends to have a white

spectrum on interannual time scales (e.g., Vasseur and

Yodzis 2004; Ault and St George 2010), the underlying

continuum of hydroclimate may be somewhat ‘‘redder’’

in WNA (Cayan et al. 1998; Ault and St George 2010;

Ault et al. 2012, 2013). Moreover, drought indices typi-

cally have a source of built-in autocorrelation to ac-

commodate the reality that surface moisture stores

FIG. 3. The 11-yr running means of normalized paleoclimate reconstructions for (a) the

Colorado streamflow (Meko et al. 2007), (b) reconstructed PDSI from the southwesternUnited

States (Cook et al. 2004), and (c) reconstructed PDSI fromMexico (Stahle et al. 2011). Vertical

gray bars indicate decadal-scale drought (a20.5s deviation in the 11-yr mean). All time series

are standardized to exhibit one unit of standard deviation and a mean of zero over the 1950–

2000 reference period.
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depend on their prior states (i.e., they have ‘‘memory’’).

For example, PDSI models the surface water balance

using a simplified approximation of soil moisture, and

has a built-in autocorrelation function (e.g., Alley 1984;

Wells et al. 2004). Similarly, the standardized pre-

cipitation index (SPI) integrates anomalies over a num-

ber of predefined lags tomeasure how aggregated rainfall

anomalies deviate from their long-term averages.

FIG. 4. Map of projected precipitation over the twenty-first-century (2005–2100) change in the RCP8.5 scenario shown as a percentage

of twentieth-century precipitation change [as in the global maps of Diffenbaugh and Giorgi (2012)]. For each model, the number of

available runs from each experiment is shown in parentheses in the following order: historical, piControl, RCP2.6, RCP4.5, and RCP8.5.

The red box shows the greater southwestern United States to emphasize the focus of this study (308–408N, 1208–1038W).

7534 JOURNAL OF CL IMATE VOLUME 27



In a simplistic sense, year-to-year persistence can be

described as a first-order autoregressive [AR(1)] process

[XAR(1)(t)]:

XAR(1)(t)5aXAR(1)(t2 1)1Xw(t) , (2)

where a is the lag-1 (i.e., 1 yr) autocorrelation coefficient

and is derived empirically from data, XAR(1)(t) is au-

toregressive red noise, andXw(t) is thewhite noise input.

In WNA, the value of a is about 0.3 on interannual time

scales for the three (tree ring based) paleoclimate re-

constructions shown in Fig. 3, as well as for many other

hydroclimate indicators (Ault et al. 2013). A single re-

alization of this type of noise (normalized to exhibit unit

variance overall) is shown in Fig. 5, and the statistical

characteristics of megadroughts in this type of noise are

shown in Fig. 6.

Despite the intuitive and simple representation of

hydroclimate as an AR(1) process—moisture deficits

tend to persist through time—there is some evidence

that such an approximation misses key characteris-

tics of variability on longer time scales (Pelletier and

Turcotte 1997; Kantelhardt et al. 2006; Koscielny-

Bunde et al. 2006; Ault et al. 2013). As a complemen-

tary approach, we also simulate hydroclimate as

a process with underlying frequency characteristics

that are described by a weak power-law relationship

between frequency f and variance S( f ), such that

S( f ) } f2b. Power spectra with higher values of b cor-

respond to time series that exhibit more variance at

lower frequencies. To generate time series with this

type of frequency behavior, we employ a method

similar to the one described by Pelletier and Turcotte

(1997) and explained thoroughly in Pelletier (2008).

First, we calculate the discrete Fourier transform of

FIG. 5. Examples of Monte Carlo (MC) time series used to simulate decadal drought with

three different underlying frequency characteristics [white noise, AR(1), and power law]:

(a) 50 yr of a single MC realization of each type of noise, (b) the 1000-yr full realization of each

noise type, and (c) the 11-yr running mean of each type of noise, shown with the dashed line

denoting a decadal drought (e.g., a 20.5s in the 11-yr running mean). Importantly, each MC

time series has a mean of zero and unit standard deviation, and differ only in the distribution of

their variances across the power spectrum.Moreover, the AR(1) and power-law time series are

generated by rescaling the white noise data, which is why the different realizations of noise

appear so strongly correlated with each other.
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a white noise time series Xw(t), and filter it to conform

to a predefined value of b:

~Xp(k)5ck �
N

t51

Xw(t)e
2i2pk[(t21)/N], k5 0, . . . ,N2 1,

(3)

where k are the standard Fourier frequencies and N is

the length of the time series. The term ck rescales the

Fourier coefficients so that they are approximately

power-law distributed:

ck5

8>>>>><
>>>>>:

�
1

N

�2b/
ffiffi
2

p

if k5 0

�
k

N

�2b/
ffiffi
2

p

otherwise.

(4)

Here the value of b is divided by
ffiffiffi
2

p
because it is being

applied to the raw Fourier coefficients, which have am-

plitudes proportional to the square root of the power

spectrum.

The rescaled Fourier series ~Xp(k) is then used to

generate power-law time series Xp(t) by taking the real

part of the inverse Fourier transform of ~Xp(k):

Xp(t)5Re

(
1

N
�
N21

k50

~Xp(k)e
2i2pk[(t21)/N]

)
, t51, . . . ,N .

(5)

Finally, the mean and variance are restored to the values

of the original white noise data (zero and unity, in this

case).

We used a value of 0.5 for b to rescale each realization

ofXw(t), which was suggested as an appropriate estimate

by Ault et al. (2013) from synthesis of tree-ring re-

constructions of precipitation, PDSI, and streamflow as

well as non-tree-ring estimates of hydroclimate. As

a check, we calculated the power laws of the noises after

they had been rescaled. We found that the actual values

of b varied from one realization to the next, but were

generally between 0.4 and 0.6. This range agrees well

with instrumental and paleoclimate estimates of this

parameter for the region, and is certainly within the

observational uncertainty (Ault et al. 2013). Impor-

tantly, time series with spectra scaled by power laws of

;0.5 will also appear to exhibit autocorrelation of about

0.3, which in turn implies that the AR(1) and power-law

realizations will behave very similarly on short time

scales, but not necessarily on longer ones (e.g., Pelletier

and Turcotte 1997; Ault et al. 2013). Finally, our use of

power-law noises does not make any assumptions about

the underlying climate dynamics governing the shape of

the power spectrum of hydroclimate: linear and non-

linear processes alike may produce such spectral distri-

butions (Milotti 1995; Penland and Sardeshmukh 2012).

Table 1 highlights a few key features of the two

models employed here. In particular, the noise models

used to estimate drought risk use parameters that do not

vary across space, and all are scaled to the twentieth-

centurymean and variance. The autocorrelation parameter

of 0.3 is a middle-of-the-road value from the time series

FIG. 6. Statistics summarizing Monte Carlo simulations: (a) dis-

tributions of years spent in decadal ($11 yr) drought conditions for

each type of noise (as a percentage of all realizations), (b) risk of at

least one decadal ($11 yr) drought during any given 50-yr window

in any realizations, and (c) risk of a multidecadal ($35 yr) drought

during any 50-yr window. Risk in (b) and (c) is expressed as

a percentage of the total number of simulations.
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shown in Fig. 3, and is well within the range of estimates

for autocorrelation in the region from other paleo-

climate and observational datasets (Ault et al. 2013).

The value used for b (0.5) is from the analysis of proxy

records in Ault et al. (2013) as well, and is supported

by Fig. 7.

Sample time series and statistics of power-law re-

alizations of drought (Figs. 5 and 6, respectively) reveal

the importance of low-frequency variability in shaping

prolonged drought risk. Over the time scale of 50 years,

the white, AR(1), and power-law noises are all re-

markably similar to each other [because the initial re-

alization of Xw(t) is rescaled to produce both XAR(1)(t)

andXp(t)]. On the time scale of a millennium (Fig. 5b),

the low-frequency differences are more apparent. The

running 11-yr mean of each noise type (Fig. 5b) makes

the implications for risk clear: the AR(1) and power-

law time series spend more time in drought and depict

higher levels of risk for megadrought. In Fig. 6a, it is

also clear that the fraction of time spent in decadal

drought conditions is about 17% for the power-law

noise realizations, as opposed to 10% for the AR(1)

simulations, and less than 5% for the white noise time

series. Although the AR(1) and power-law time series

exhibit similar likelihoods that a single decadal

drought will occur during any given 50-yr period, the

power-law series yields events that persist for longer.

Drought risk on longer time scales, however, is clearly

far higher for the power-law distributed time series

than for the other two, with the risk of a 35-yr (20.5s)

megadrought being greater than 16% for any given 50-yr

segment. We stress that these risks apply to a stationary

climate with no local feedbacks or externally forced

changes. They are therefore our most conservative

baseline estimates of prolonged drought risk during the

coming century.

c. Projected risk of persistent drought in CMIP5
simulations

Our definition of megadrought is easily extended to

climate model data. For instance, projected pre-

cipitation at the jth position of each grid of a given

model can be transformed as

Ẑj(t)5
Pj(t)2 m̂j

ŝj

, (6)

where m̂j and ŝj are the late twentieth-century (1950–

2000 CE)mean and standard deviation, respectively. The

subscript j is used as a spatial index (i.e., a point on a grid).

Certain limitationsmake estimatingmegadrought risk

in the CMIP5 archive more complicated than simply

TABLE 1. Summary of the two red noise models used here to estimate drought risk in western North America. The key parameters are

reported in the second column, and they do not vary spatially. The value of a (0.3) is the approximate autocorrelation of the three time

series in Fig. 3, as well as the data analyzed in (Ault et al. 2013, Fig. 2), which supports values between 0.25 and 0.35. The estimate used for

b (0.5) is a middle-of-the-road estimate from those reported in (Ault et al. 2013), and also Fig. 7.

Model Parameters Estimated from References

AR(1) a(0.3) Streamflow, soil moisture,

tree-ring reconstructions

Meko et al. (2007); Cook et al. (2004); Stahle et al. (2011);

Ault et al. (2013); this study

Power law b(0.5) Long tree-ring chronologies,

other hydroclimate proxies

Pelletier and Turcotte (1997); Ault et al. (2013); this study

FIG. 7. Power-law estimates (b) from (a) twentieth-century in-

strumental data and (b) and CMIP5 historical (1850–2005 CE)

simulations. Instrumental data originate from the University of

East Anglia’s TS3.1 data product and, like the CMIP5 records,

were annualized prior to calculating b.
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calculating how often these events occur in climate

projections. First, the number of ensemble members

available from each model is small (Fig. 4), and the role

for internal variability may be substantial on decadal to

multidecadal time scales (Hawkins and Sutton 2009;

Deser et al. 2012). This makes it difficult to reliably es-

timate risks stemming from the combined influences of

forced changes and internal variability. Second, the

distribution of variance across time scales is different in

observational data than in models. In particular, models

tend to exhibit power spectra resembling white noise in

WNA, even when run for many centuries or forced with

the time-evolving boundary conditions of the last mil-

lennium (Ault et al. 2012, 2013). To illustrate this point

further here, we show power-law estimates from ob-

servations and CMIP5 data in Fig. 7. In this case, the

power-law coefficients are calculated from each model

individually and then averaged together to produce this

map. Importantly, the results of individual models ap-

pear similar to this ensemble average, supporting recent

findings that the continuum of hydroclimate in WNA

appears to be considerably redder in observations than

in models (Ault et al. 2013, 2012).

We address the aforementioned challenges by de-

veloping a Monte Carlo model of hydroclimate vari-

ability to emulate the statistics of both natural variability

and climate change in WNA. This approach enables us

to evaluate projected risk of prolonged drought in the

twenty-first century for a given climate change scenario.

We use the underlying frequency characteristics of ob-

servational data (including paleodata), as well as pro-

jected changes in precipitation simulated by models

archived as part of CMIP5. The Monte Carlo model is

described by

Ẑij(t)5Xw(t)

0
@.̂ij
ŝij

1
A1 j(Dm̂ij,s

2
m
ij
) , (7)

where Ẑij(t) is normalized precipitation of the ith model

at the jth point on a grid, and Xw(t) is a normally dis-

tributed time series of white noise with unit variance.

The quantity .̂ij/ŝij scales the white noise by normalizing

the twenty-first-century standard deviations (.̂ij) from

a given model grid point by the corresponding

twentieth-century reference standard deviation (ŝij).

Twentieth- to twenty-first-century differences in mean

precipitation at each point in each model are repre-

sented by the random, normally distributed variable jij,

with expected mean ofDm̂ij (the change in precipitation)

and variance (s2
mij
), estimated from ensembles of runs

when possible, and otherwise set to zero. Finally, to

generate Monte Carlo twenty-first-century realizations

of hydroclimate with AR(1) and power-law distribu-

tions in frequency space, we rescale Ẑij(t) following the

same methods described above.

We estimate decadal drought and multidecadal meg-

adrought risk in three climate change scenarios (RCP2.6,

RCP4.5, and RCP8.5) for each of the 27 CMIP5 models

considered here by generating 1000 stochastic (white

noise) realizations, each 1000 years long, of WNA

hydroclimate using Eq. (7), as well as the AR(1) and

power-law rescaling procedures. In each model, and for

each RCP, estimates of ŝ are made using the 1950–2000

portion of the model’s historical simulation, and .̂ is es-

timated over the 50-yr interval spanning 2050–2100.

Likewise, Dm̂ and s2
m, are estimated from the differences

between historical (1950–2000) and late twenty-first-

century (2050–2100) precipitation means. We then

identify the percentage of all 1000 realizations that ex-

perience decadal drought or multidecadal megadrought

conditions in each RCP, model, and type of noise.

3. Results

In the CMIP5 control runs, rates of decadal drought

occurrence (the average number of events per century)

are spatially uniform and close to one (Fig. 8a). Similarly,

white noise realizations also tend to produce about one

event per century.Under climate change, rates of decadal

drought occurrence show more regional diversity than in

the controls (Figs. 8b–d). In the northern part of WNA,

rates are close to zero, whereas throughout much of the

U.S. Southwest they are between 1.5 and 1.75. Multi-

decadalmegadrought rates are close to zero in the control

runs of the CMIP5 archive (Fig. 8e). Under climate

change, these rates are closer to 0.5 (or 1 event per

200 yr), but they are still quite rare (Figs. 8f–h).

The risk of a single decade-long drought over any

given 50-yr period in the control runs is about 50%

(Fig. 9a), which is intuitive because the corresponding

rate is about one per century. Decadal drought risk in

the climate change scenarios, estimated over the period

2050–2100, depicts a decrease in the northern regions,

and an increase to between 60%and 80% (Figs. 9b–d) in

the U.S. Southwest. Moreover, risk increases in the U.S.

Southwest with the intensity of the warming; the highest

levels are found under the RCP8.5 scenario.

In the unforced control runs, the risk of amultidecadal

megadrought is less than 1% throughout the region

(Fig. 9e). Under climate change, however, risks in the

U.S. Southwest increase to 10%–20% inRCP2.6 (Fig. 9f),

20%–40% inRCP4.5 (Fig. 9g), and 30%–50% inRCP8.5

(Fig. 9h).

A qualitatively similar picture of risk to that in Fig. 9 is

seen in Figs. 10 and 11, which summarize our Monte
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Carlo experiments using Eq. (7) to generate stochastic

hydroclimate realizations, and the procedures described

in section 2b to rescale them to exhibit AR(1) and

power-law frequency distributions. In the U.S. South-

west, for example, risk of droughts at both decadal and

multidecadal time scales increases with the intensity of

the greenhouse gas forcing (columns) and type of noise

(rows). Uncertainty in our risk estimates is depicted by

the standard deviations of the individualmodel estimates

of risk in Fig. 12. Results for the multidecadal mega-

drought risk standard deviations are shown in Fig. 13.

Thus far, we have only considered the risk of a pro-

longed period of aridity using two somewhat narrow

definitions of decadal drought and megadrought. To

develop a more complete representation of drought

risk across a wide range of time scales and magnitudes,

we examine the two-dimensional probability density

function of drought risk using the same time scale-

independent definition employed by Ault et al. (2013).

Specifically, a drought is defined as a period of time

during which 3/5 of the antecedent years are below

a particular threshold. These thresholds are the values of

the x axes on the individual panels of Fig. 14, and the

time scales are shown on the y axes of that figure. As in

the earlier figures, risk is estimated from allMonte Carlo

simulations of each model for each RCP, then averaged

across the individual CMIP5 members to produce the

‘‘magnitude versus duration’’ diagrams in Fig. 14.

The results in Fig. 14 show that risk increases with

GHG forcing intensity across all time scales in the raw

CMIP5 archive (Figs. 14a–c), as well as for each type of

noise. It also illustrates that the AR(1) and power-law

distributions depict higher levels of risk on decadal and

longer time scales than the white noise and CMIP5 en-

sembles. To emphasize this point further, we show the

differences in drought risk across time scales between

each type of noise and the rawCMIP5 estimates in Fig. 15.

From this figure, it is clear that the low-probability (but

FIG. 8. Estimated rate of prolonged drought occurrence in (a),(e) control and (b)–(d),(f)–(h) forced CMIP5 simulations. The rate is

calculated as the number of events per century averaged across all models, and across all centuries in the control cases in (a) and (e). (top)

Indicates the rate of decadal ($11 yr) drought, and (bottom) the rate ofmultidecadal ($35 yr) megadrought occurrence. Forcing scenarios

are indicated to the left of each map.
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presumably consequential) ‘‘tails’’ of the distributions are

far more likely in the AR(1) and power-law noises than in

the raw CMIP5 archive. For instance, under the RCP8.5

scenario, the risk of a 0.5s event on 40-yr time scales is

below 5% as estimated from CMIP5 runs (Fig. 14c), but

closer to 10% in the power-lawnoise realizations (Fig. 14i).

We extend our analysis of megadrought risk in the

western United States to the rest of the world by exam-

ining raw CMIP5 estimates of decadal drought and mul-

tidecadal megadrought from the three RCP scenarios

(Fig. 16). Risks throughout the subtropics appear as high

as or higher than our estimates for the U.S. Southwest

(e.g., in the Mediterranean region, western and southern

Africa, Australia, and much of South America). We do

not attempt to develop regionally appropriate stochastic

realizations of precipitation at this time, although such an

endeavor could be straightforward in areas where in-

strumental and paleoclimate data are adequate to char-

acterize the underlying continuum of hydroclimate. In

areas where low-frequency variability in precipitation is

substantial andnotwell simulated by climatemodels (e.g.,

West Africa; Ault et al. 2012), the results shown here

likely underestimate future risk of persistent drought.

We stress that our results have only used precipitation,

yet temperature may play a substantial role in driving or

exacerbating drought. Also, we used the low end of b

estimates from Ault et al. (2013) to generate the power-

law noises, but higher values might be realistic on long

time scales, according to the preponderance of paleo-

climate evidence considered in that study, and would

raise the levels of risk. Hence, to the extent that the global

climate models simulate future change realistically and

FIG. 9. Estimated risk of at least one prolonged drought in (a),(e) control and (b)–(d),(f)–(h) simulations. (top) Indicates the risk

of decadal (.11 yr) drought, and (bottom) indicates the risk of multidecadal (.35 yr) megadrought. The risk is calculated as the percent

of the total number of models (27) that simulate decadal or multidecadal megadrought. Forcing scenarios are indicated to the left of

each map.
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FIG. 10. Decadal (.11 yr) drought risk estimates obtained from Monte Carlo simulations of projected precipitation changes across all

models in three different climate change scenarios (columns) and for three different types of noises (rows). These maps express the

average risk estimates obtained from Monte Carlo simulations of precipitation in each model under three climate change scenarios. For

each of the 27 individual CMIP5 models, risk is calculated as the percentage of the total number of Monte Carlo simulations (1000) that

show a decadal drought. Here, those estimates of risk are averaged across the multimodel archive.
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FIG. 11. Multidecadal (.35 yr) megadrought risk estimates obtained from Monte Carlo simulations of projected pre-

cipitation changes across all 27 CMIP5 models in three different climate change scenarios (columns) and for three different

types of noises (rows). These maps express the average risk estimates obtained from Monte Carlo simulations of pre-

cipitation in each model under three climate change scenarios. For each of the 27 individual CMIP5 models, risk is cal-

culated as the percentage of the total number of Monte Carlo simulations (1000) that show a multidecadal megadrought.

Here, those estimates of risk are averaged across the multimodel archive.
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FIG. 12. Standard deviations of decadal (.11 yr) drought risk estimates in Fig. 10. Standard deviations are calculated from the individual

risk estimates of each model at each point for three different climate change scenarios (columns) and for three different types of noises

(rows). These maps express the spatial variability of uncertainty in the risk estimates of Fig. 10.
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FIG. 13. Standard deviations of drought risk estimates as in Fig. 12, but for multidecadal (.35 yr) megadrought risk.
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our simpleMonte Carlo models are adequate, the view of

risk presented here is quite conservative.

4. Discussion and conclusions

In the current generation of global climatemodels, the

risk of a decade-scale drought occurring this century is at

least 50% for most of the greater southwestern United

States and may indeed be closer to 80% (Figs. 9 and 10).

The probability of multidecadal megadrought is also

high: the likelihood of a 35-yr event is between 10% and

50% depending on how much climate change is realized

during the coming century. The probability of even

longer events (.50-yr, or ‘‘permanent,’’ megadrought)

is nonnegligible (5%–10%) for the most intense warm-

ing scenario (Fig. 14). Risk levels correspond to the in-

tensity of forcing and the underlying distribution of

hydroclimatic variance across the frequency continuum.

The RCP8.5 scenario, for instance, depicts the highest

levels of risk regardless of the underlying noise type.

Likewise, the power-law noises produce higher mega-

drought likelihoods for each RCP than the other noises.

An obvious limitation of our work is that it is ‘‘blind’’ to

certain aspects of dynamically driven changes in prolonged

drought risk. For instance, changes in the magnitude, fre-

quency, or teleconnection patterns of El Niño and LaNiña
(e.g., Coats et al. 2013a) may alter the statistics of in-

terannual variability in ways that are not captured by our

simple models. Further, megadrought statistics over the

last millenniummay be forcing dependent, as suggested by

Cook et al. (2004), for instance, which shows that mega-

droughts were more common during the medieval climate

era of 850–1200 CE. Another very serious limitation is

imposed by the reliability of the models themselves to

make realistic predictions of changes in climatological

precipitation for the end of the twenty-first century.

FIG. 14. Drought magnitude vs duration for realizations of southwestern U.S. precipitation time series in each climate change scenario,

obtained from the following sources: (a)–(c) raw CMIP5 projections, (d)–(f) white noise, (g)–(i) AR(1) realizations, and (j)–(l) power-law

realizations.
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The projected increases in risk for the U.S. Southwest

reflect forced changes in the global hydrological cycle

(e.g., Held and Soden 2006; Solomon et al. 2007; Vecchi

and Soden 2007; Seager et al. 2010). As such, the global

picture of persistent drought risk in the CMIP5 archive

(Fig. 16) bears a striking resemblance to the projected

decreases in precipitation throughout many semiarid

regions of the world (Diffenbaugh and Giorgi 2012;

Knutti and Sedlacek 2013). It follows that prolonged

drought risk is a function not only of forced changes in

the global hydrological cycle and the severity of future

warming, but also of the accuracy with which GCMs

project large-scale changes in hydroclimate (e.g., Held

and Soden 2006; Seager et al. 2007; Vecchi and Soden

2007; Seager et al. 2010). Moreover, we have based our

analysis on precipitation projections, yet this variable

has been notoriously challenging for GCMs to simulate

accurately and large biases may remain in some models

(e.g., Knutti and Sedlacek 2013; Jiang et al. 2012). Our

estimates of risk are consequently only as accurate as

climate model projections of changes in precipitation.

An alternative approach, employed for instance by

Seager et al. (2007, 2010), examines the role of large-

scale dynamic and thermodynamic controls on pre-

cipitation minus evapotranspiration (P 2 E). Such

studies have found that drought conditions like the Dust

Bowl will become normal in the Southwest and in other

subtropical dry zones. If such transitions are indeed

‘‘imminent,’’ as stated in those studies, then the risk of

decadal drought is 100%, and the risk of longer-lived

events is probably also extremely high. By orienting our

analysis around precipitation, the risks of prolonged

drought we show here are in fact the lowest levels con-

sistent with model simulations of future climates.

From Fig. 16 it is also clear that several other areas

may be facing similar (or worse) levels of prolonged risk

in the coming century. Synthesis of paleoclimatic, in-

strumental, andmodel data for these regionsmay lead to

improvements in projecting risks in these areas and

preparing appropriate adaptation and mitigation strat-

egies. For example, high-resolution tree-ring and cave

records are available from Southeast Asia (e.g., Cook

et al. 2010a; Buckley et al. 2010; Sinha et al. 2007, 2011;

Zhang et al. 2008) and could be used in conducting such

an analysis for that region.

Despite the simplicity of our Monte Carlo model of

hydroclimate inWNA, our results illustrate a crucial point

for water resourcemanagers in the region: CMIP5models

alone underestimate megadrought risk. This argument

was implied in several recent studies (Cook et al. 2010b;

Ault et al. 2012, 2013), but its details and implications are

laid out more explicitly here (Fig. 15 specifically). Future

work could refine estimates of future risks by adding ad-

ditional layers of complexity to the framework we have

outlined. For example, we have only used annual pre-

cipitation, which we found to be approximately normally

distributed in most of WNA in most models. A more so-

phisticated approach could simulate the joint PDF of

FIG. 15. Differences in duration vs magnitude risk estimates between raw CMIP5 and the two types of noises with low-frequency

variability. These results are for the southwestern U.S. region, and they illustrate the difference in drought risk at a given magnitude and

duration if low-frequency noise is prominent. Under the strongest forcing, the low-frequency noise models increase the risk of a multi-

decadal megadrought by about 8%–10%.
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temperature and precipitation at monthly resolution, and

use a more fine-tuned type of distribution and various

drought indices to do so. Moreover, our noise simulations

are one-dimensional in the sense that we did not build

spatial autocorrelation into the noises. Developing and

applying a model with realistic spatial covariance struc-

tures could help in addressing risks associated with per-

sistent drought across large geographic scales. Likewise, it

is possible that improvements in climate models, along

with increasing computer power to run larger and larger

ensembles, will allow for dynamically constrained assess-

ments of megadrought risk using future generations of

fully coupled climatemodels. In themeantime, our results

provide quantitative benchmarks for water management

and climate modeling communities.

5. Implications

Droughts in the past have had particularly notable

human and financial costs. In the United States alone,

for instance, the Federal Crop Insurance Corporation

spent an average of $1.7 billion annually to compensate

losses from 1980 to 2005, and this number has been in-

creasing (Stephenson 2007). In the future, such losses

might be curtailed if the full range of natural and forced

hydroclimatic variability can be included in mega-

drought risk mitigation strategies. Here, we have

described a method for combining insights from obser-

vational data and projections from climate models to

estimate the risk of persistent intervals of aridity in the

coming century in the U.S. Southwest. In this region

where high-quality proxy records of hydroclimate have

been used to constrain the underlying features of hy-

droclimate on decadal and longer time scales, the risk of

decadal drought is at least 70% and may be higher than

90%. The risk of a multidecadal megadrought may be as

high as 20%–50%, and the likelihood of an un-

precedented 50-yr drought is nonnegligible (5%–10%).

A number of other regions face similarly high levels of

risk including southern Africa, Australia, and the Am-

azon basin. Moreover, future drought severity will be

exacerbated by increases in temperature, implying that

FIG. 16. Global estimates of (left) decadal and (right) multidecadal megadrought in the raw CMIP5 archive. As in

Fig. 9, risk is calculated as the percent of the total number of models (27) that simulate a decadal or multidecadal

megadrought. Forcing scenarios are indicated to the left of each map.
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our results should be viewed as conservative provided

that themodels depict accurate forced trends in regional

hydroclimate. These findings emphasize the need to

develop drought mitigation strategies that can cope with

decadal and multidecadal droughts in changing climates

with substantial sources of low-frequency variability.

Acknowledgments. We thank Steve Gray, Jeff Lukas,

Connie Woodhouse, and the U.S. Bureau of Reclama-

tion for assistance, and we appreciate the helpful re-

views we received from Joellen Russell and Scott St.

George. We are also grateful for the extensive insight

and feedback we received from an anonymous reviewer.

This project was supported in part by NSF graduate and

NCAR-ASP postdoctoral fellowships to T. Ault, NOAA

CCDD (NA07OAR4310054), NSF P2C2 (0903093)

support for J. Cole, and NOAA Climate Program Office

support for CLIMAS (J. Overpeck), as well as NSF

EaSM2Grant (1243125) to Cole andOverpeck. Any use

of trade, product, or firm names is for descriptive pur-

poses only and does not imply endorsement by the U.S.

Government.

REFERENCES

Alley, W. M., 1984: The Palmer drought severity index—

Limitations and assumptions. J. Climate Appl. Meteor.,

23, 1100–1109, doi:10.1175/1520-0450(1984)023,1100:

TPDSIL.2.0.CO;2.

Ault, T. R., and S. St. George, 2010: The magnitude of decadal and

multidecadal variability in North American precipitation.

J. Climate, 23, 842–850, doi:10.1175/2009JCLI3013.1.

——, J. E. Cole, and S. St. George, 2012: The amplitude of decadal

to multidecadal variability in precipitation simulated by state-

of-the-art climate models. Geophys. Res. Lett., 39, L21705,

doi:10.1029/2012GL053424.

——, ——, J. T. Overpeck, G. T. Pederson, S. St. George, B. Otto-

Bliesner, C. A. Woodhouse, and C. Deser, 2013: The contin-

uum of hydroclimate variability in western North America

during the last millennium. J. Climate, 26, 5863–5878,

doi:10.1175/JCLI-D-11-00732.1.

Buckley, B. M., and Coauthors, 2010: Climate as a contributing

factor in the demise of Angkor, Cambodia. Proc. Natl. Acad.

Sci. USA, 107, 6748–6752, doi:10.1073/pnas.0910827107.
Cayan, D. R., M. D. Dettinger, H. F. Diaz, and N. E. Graham, 1998:

Decadal variability of precipitation over western NorthAmerica.

J. Climate, 11, 3148–3166, doi:10.1175/1520-0442(1998)011,3148:

DVOPOW.2.0.CO;2.

Charney, J., 1975: Dynamics of deserts and drought in Sahel.

Quart. J. Roy. Meteor. Soc., 101, 193–202, doi:10.1002/

qj.49710142802.

Coats, S., J. E. Smerdon, B. I. Cook, and R. Seager, 2013a: Sta-

tionarity of the tropical pacific teleconnection to North

America in CMIP5/PMIP3 model simulations. Geophys. Res.

Lett., 40, 4927–4932, doi:10.1002/grl.50938.
——, ——, R. Seager, B. I. Cook, and J. F. González-Rouco,

2013b: Megadroughts in southwestern North America in

ECHO-G millennial simulations and their comparison to

proxy drought reconstructions. J. Climate, 26, 7635–7649,

doi:10.1175/JCLI-D-12-00603.1.

Cook, E. R., C. A. Woodhouse, C. M. Eakin, D. M. Meko, and

D. W. Stahle, 2004: Long-term aridity changes in the western

United States. Science, 306, 1015–1018, doi:10.1126/

science.1102586.

——, R. Seager, M. A. Cane, and D. W. Stahle, 2007: North

American drought: Reconstructions, causes, and consequences.

Earth Sci. Rev., 81, 93–134, doi:10.1016/j.earscirev.2006.12.002.

——, K. J. Anchukaitis, B. M. Buckley, R. D. D’Arrigo, G. C.

Jacoby, and W. E. Wright, 2010a: Asian monsoon failure and

megadrought during the last millennium. Science, 328, 486–

489, doi:10.1126/science.1185188.

——, R. Seager, R. R. Heim, R. S. Vose, C. Herweijer, and

C.Woodhouse, 2010b:Megadroughts in NorthAmerica: Placing

IPCC projections of hydroclimatic change in a long-term pa-

laeoclimate context. J. Quat. Sci., 25, 48–61, doi:10.1002/jqs.1303.

deMenocal, P., 2001: Cultural responses to climate change during

the Late Holocene. Science, 292, 667–673, doi:10.1126/

science.1059827.

Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty

in climate change projections: The role of internal variability.

Climate Dyn., 38, 527–546, doi:10.1007/s00382-010-0977-x.
Diffenbaugh, N., and F. Giorgi, 2012: Climate change hotspots in

the CMIP5 global climate model ensemble. Climatic Change,

114, 813–822, doi:10.1007/s10584-012-0570-x.
Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall

and worldwide sea temperatures, 1901–85. Nature, 320, 602–

607, doi:10.1038/320602a0.

Fye, F. K., D. W. Stahle, and E. R. Cook, 2003: Paleoclimatic an-

alogs to twentieth-century moisture regimes across the United

States. Bull. Amer. Meteor. Soc., 84, 901–909, doi:10.1175/

BAMS-84-7-901.

Haug, G. H., D. Gunther, L. C. Peterson, D. M. Sigman, K. A.

Hughen, and B. Aeschlimann, 2003: Climate and the collapse

of Maya civilization. Science, 299, 1731–1735, doi:10.1126/

science.1080444.

Hawkins, E., and R. Sutton, 2009: The potential to narrow un-

certainty in regional climate predictions. Bull. Amer. Meteor.

Soc., 90, 1095–1107, doi:10.1175/2009BAMS2607.1.

Held, I. M., and B. J. Soden, 2006: Robust responses of the hy-

drological cycle to global warming. J. Climate, 19, 5686–5699,

doi:10.1175/JCLI3990.1.

Hoerling, M., J. Hurrell, J. Eischeid, and A. Phillips, 2006: De-

tection and attribution of twentieth-century northern and

southern African rainfall change. J. Climate, 19, 3989–4008,

doi:10.1175/JCLI3842.1.

Hunt, B. G., 2011: Global characteristics of pluvial and dry multi-

year episodes, with emphasis on megadroughts. Int. J. Cli-

matol., 31, 1425–1439, doi:10.1002/joc.2166.

Jiang, J. H., and Coauthors, 2012: Evaluation of cloud and water

vapor simulations in CMIP5 climate models using NASA

‘‘A-Train’’ satellite observations. J. Geophys. Res., 117,D14105,

doi:10.1029/2011JD017237.

Kantelhardt, J., E. Koscielny-Bunde, D. Rybski, P. Braun,

A. Bunde, and S. Havlin, 2006: Long-term persistence and mul-

tifractality of precipitation and river runoff records. J. Geophys.

Res., 111, D01106, doi:10.1029/2005JD005881.

Knutti, R., and J. Sedlacek, 2013: Robustness and uncertainties in

the new CMIP5 climate model projections. Nat. Climate

Change, 3, 369–373, doi:10.1038/nclimate1716.

Koscielny-Bunde, E., J. W. Kantelhardt, P. Braun, A. Bunde, and

S. Havlin, 2006: Long-term persistence and multifractality of

7548 JOURNAL OF CL IMATE VOLUME 27

http://dx.doi.org/10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO;2
http://dx.doi.org/10.1175/2009JCLI3013.1
http://dx.doi.org/10.1029/2012GL053424
http://dx.doi.org/10.1175/JCLI-D-11-00732.1
http://dx.doi.org/10.1073/pnas.0910827107
http://dx.doi.org/10.1175/1520-0442(1998)011<3148:DVOPOW>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1998)011<3148:DVOPOW>2.0.CO;2
http://dx.doi.org/10.1002/qj.49710142802
http://dx.doi.org/10.1002/qj.49710142802
http://dx.doi.org/10.1002/grl.50938
http://dx.doi.org/10.1175/JCLI-D-12-00603.1
http://dx.doi.org/10.1126/science.1102586
http://dx.doi.org/10.1126/science.1102586
http://dx.doi.org/10.1016/j.earscirev.2006.12.002
http://dx.doi.org/10.1126/science.1185188
http://dx.doi.org/10.1002/jqs.1303
http://dx.doi.org/10.1126/science.1059827
http://dx.doi.org/10.1126/science.1059827
http://dx.doi.org/10.1007/s00382-010-0977-x
http://dx.doi.org/10.1007/s10584-012-0570-x
http://dx.doi.org/10.1038/320602a0
http://dx.doi.org/10.1175/BAMS-84-7-901
http://dx.doi.org/10.1175/BAMS-84-7-901
http://dx.doi.org/10.1126/science.1080444
http://dx.doi.org/10.1126/science.1080444
http://dx.doi.org/10.1175/2009BAMS2607.1
http://dx.doi.org/10.1175/JCLI3990.1
http://dx.doi.org/10.1175/JCLI3842.1
http://dx.doi.org/10.1002/joc.2166
http://dx.doi.org/10.1029/2011JD017237
http://dx.doi.org/10.1029/2005JD005881
http://dx.doi.org/10.1038/nclimate1716


river runoff records: Detrended fluctuation studies. J. Hydrol.,

322, 120–137, doi:10.1016/j.jhydrol.2005.03.004.

Leblanc, M., S. Tweed, A. VanDijk, and B. Timbal, 2012: A review

of historic and future hydrological changes in the Murray-

Darling Basin. Global Planet. Change, 80–81, 226–246,

doi:10.1016/j.gloplacha.2011.10.012.

Meko, D. M., C. A. Woodhouse, C. A. Baisan, T. Knight, J. J.

Lukas, M. K. Hughes, and M. W. Salzer, 2007: Medieval

drought in the upper Colorado River Basin. Geophys. Res.

Lett., 34, L10705, doi:10.1029/2007GL029988.

——, ——, and K. Morino, 2012: Dendrochronology and links

to streamflow. J. Hydrol., 412, 200–209, doi:10.1016/

j.jhydrol.2010.11.041.

Milotti, E., 1995: Linear processes that produce 1/f or flicker noise.

Phys. Rev. E, 51, 3087–3103, doi:10.1103/PhysRevE.51.3087.

Mitchell, T. D., and P. D. Jones, 2005: An improved method of

constructing a database of monthly climate observations and

associated high-resolution grids. Int. J. Climatol., 25, 693–712,

doi:10.1002/joc.1181.

Moss, R. H., and Coauthors, 2010: The next generation of scenarios

for climate change research and assessment.Nature, 463, 747–

756, doi:10.1038/nature08823.

Pelletier, J. D., 2008: Quantitative Modeling of Earth System Pro-

cesses. 1st ed. Cambridge University Press, 294 pp.

——, and D. Turcotte, 1997: Long-range persistence in climato-

logical and hydrological time series: Analysis, modeling and

application to drought hazard assessment. J. Hydrol., 203,

198–208, doi:10.1016/S0022-1694(97)00102-9.

Penland, C., and P. D. Sardeshmukh, 2012: Alternative in-

terpretations of power-law distributions found in nature.

Chaos, 22, 023119, doi:10.1063/1.4706504.

Routson, C. C., C. A. Woodhouse, and J. T. Overpeck, 2011: Sec-

ond century megadrought in the Rio Grande headwaters,

Colorado: How unusual was medieval drought?Geophys. Res.

Lett., 38, L22703, doi:10.1029/2011GL050015.

Seager, R., and Coauthors, 2007: Model projections of an im-

minent transition to a more arid climate in southwestern

North America. Science, 316, 1181–1184, doi:10.1126/

science.1139601.

——, N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dy-

namic mechanisms for large-scale changes in the hydrological

cycle in response to global warming. J. Climate, 23, 4651–4668,

doi:10.1175/2010JCLI3655.1.

Shanahan, T. M., and Coauthors, 2009: Atlantic forcing of persis-

tent drought in West Africa. Science, 324, 377–380,

doi:10.1126/science.1166352.

Sinha, A., K. G. Cannariato, L. D. Stott, H. Cheng, R. L. Edwards,

M. G. Yadava, R. Ramesh, and I. B. Singh, 2007: A 900-year

(600 to 1500 A.D.) record of the Indian summer monsoon

precipitation from the core monsoon zone of India. Geophys.

Res. Lett., 34, L16707, doi:10.1029/2007GL030431.

——, L. Stott, M. Berkelhammer, H. Cheng, R. L. Edwards,

B. Buckley, M. Aldenderfer, and M. Mudelsee, 2011: A

global context for megadroughts in monsoon Asia during the

past millennium. Quat. Sci. Rev., 30, 47–62, doi:10.1016/
j.quascirev.2010.10.005.

Solomon, S., D. Qin,M.Manning, Z. Chen,M.Marquis, K. Averyt,

M. Tignor, and H. L. Miller, Eds., 2007: Climate Change 2007:

The Physical Science Basis. Cambridge University Press,

996 pp.

Stahle,D.W., F.K. Fye, E.R.Cook, andR.D.Griffin, 2007: Tree-ring

reconstructedmegadroughts overNorthAmerica sinceAD1300.

Climatic Change, 83, 133–149, doi:10.1007/s10584-006-9171-x.

——, and Coauthors, 2011: Major Mesoamerican droughts of the

past millennium.Geophys. Res. Lett., 38, L05703, doi:10.1029/

2010GL046472.

Stephenson, J. B., 2007: Climate change: Financial risks to federal

and private insurers in coming decades are potentially signif-

icant. Committee on Homeland Security and Governmental

Affairs, U.S. Govt. Accountability Office, 22 pp. [Available

online at http://www.gao.gov/products/GAO-07-760T.]

Vasseur, D., and P. Yodzis, 2004: The color of environmental noise.

Ecology, 85, 1146–1152, doi:10.1890/02-3122.
Vecchi, G. A., and B. J. Soden, 2007: Global warming and the

weakening of the tropical circulation. J. Climate, 20, 4316–

4340, doi:10.1175/JCLI4258.1.

Wells, N., S. Goddard, and M. J. Hayes, 2004: A self-calibrating

Palmer drought severity index. J. Climate, 17, 2335–2351,

doi:10.1175/1520-0442(2004)017,2335:ASPDSI.2.0.CO;2.

Woodhouse, C. A., and J. T. Overpeck, 1998: 2000 years of drought

variability in the central United States. Bull. Amer. Meteor.

Soc., 79, 2693–2714, doi:10.1175/1520-0477(1998)079,2693:

YODVIT.2.0.CO;2.

Zhang, P., and Coauthors, 2008: A test of climate, sun, and culture

relationships from an 1810-year Chinese cave record. Science,

322, 940–942, doi:10.1126/science.1163965.

15 OCTOBER 2014 AULT ET AL . 7549

http://dx.doi.org/10.1016/j.jhydrol.2005.03.004
http://dx.doi.org/10.1016/j.gloplacha.2011.10.012
http://dx.doi.org/10.1029/2007GL029988
http://dx.doi.org/10.1016/j.jhydrol.2010.11.041
http://dx.doi.org/10.1016/j.jhydrol.2010.11.041
http://dx.doi.org/10.1103/PhysRevE.51.3087
http://dx.doi.org/10.1002/joc.1181
http://dx.doi.org/10.1038/nature08823
http://dx.doi.org/10.1016/S0022-1694(97)00102-9
http://dx.doi.org/10.1063/1.4706504
http://dx.doi.org/10.1029/2011GL050015
http://dx.doi.org/10.1126/science.1139601
http://dx.doi.org/10.1126/science.1139601
http://dx.doi.org/10.1175/2010JCLI3655.1
http://dx.doi.org/10.1126/science.1166352
http://dx.doi.org/10.1029/2007GL030431
http://dx.doi.org/10.1016/j.quascirev.2010.10.005
http://dx.doi.org/10.1016/j.quascirev.2010.10.005
http://dx.doi.org/10.1007/s10584-006-9171-x
http://dx.doi.org/10.1029/2010GL046472
http://dx.doi.org/10.1029/2010GL046472
http://www.gao.gov/products/GAO-07-760T
http://dx.doi.org/10.1890/02-3122
http://dx.doi.org/10.1175/JCLI4258.1
http://dx.doi.org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1998)079<2693:YODVIT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1998)079<2693:YODVIT>2.0.CO;2
http://dx.doi.org/10.1126/science.1163965

